" ERRATA NO. 1

THIRTY-SEVENTH ANNUAL REPORT '
OF THE
NATTIONAL. ADVISORY COMMITTEE FOR AERONAUTICS
1951

REPORT 1028

Page 663, column 1: In equation (38a), the last bracketed expression 1
should be corrected as follows:

1§2+Q-Md&+ﬁﬂ.”A_,Wry_uwww¢ﬁm_t

Page 663, colunm 2: In equation (38b), the last bracketed expression _
should be corrected as follows: i

@32 + L)k - 5xoﬂ !

Page 665, column 2: In equation (45c), the factor 2 preceding the second i
paerenthesis should be deleted, that is, the second term within the
bracket should read

-(l-&o) §l+§l)

Page 665, colum 2: Equation (462} should be corrected to read as follows:

2 o
W o= - ;:t[l"zxo)F1+G) &0(2§2+l)(15' >+ Gp) §

382 + 2/= =:| 2
- A Fs + G3) | + —=(2 - 3xg)
B2 ) 387

It is pointed out that the foregoing errors have been corrected in a
subsequent NACA publication (NACA TN 3076 by Nelson, Rainey, and
Watkins).
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EFFECT OF ASPECT RATIO ON THE AIR FORCES AND MOMENTS OF
HARMONICALLY OSCILLATING THIN RECTANGULAR
WINGS IN SUPERSONIC POTENTIAL FLOW!®

By CmarLes E. WATEINS

SUMMARY

This report treats the effect of aspect ratio on the air forces
and moments of an oscillating flat rectangular wing in super-
sonic potential flow. The linearized relocity potential for the
wing undergoing sinusoidal torsional oscillations simultane-
ously with sinusoidal vertical translations is derived in the
form of a power series in terms of a frequency parameter. The
series development is such that the differential equation for the
velocity potential is satisfied to the required power of the fre-
quency parameter considered and the linear boundary conditions
are satisfied exactly. The method of solution can be utilized
for other plan forms—that 18, plan forms for which certain
steady-state solutions are known.

Simple, closed expressions that include the reduced frequency
to the third power, which is sufficient for application to a large
class of practicable problems, are given for the velocity potential,
the components of total force and moment coefficients, and the
eomponents of chordwise section force and moment coefficients.
The components of total force and moment coefficients indicate
the over-all effect of aspect ratio on these guantities; however,
the components of chordwise coefficients yield more information
because they account for the spanwise distribution of aerody-
namic loading of a rectangular wing and may therefore be
more useful for flutter caleulations. It is found that the com-
ponents of foree and moment coefficients for a small-aspect-
ratio wing may deciate considerably from those of an infinite-
aspect-ratio wing. TRickness effects which may alter some of
the conclusions are mot taken into account in the analysis.
Results of some selected calculations are presented in several
figures and discussed.

INTRODUCTION

The effect of aspect ratio on the single-degree torsional
instability of a finite rectangular wing oscillating in & super-
sonic stream was treated in reference 1 by expanding, in
powers of the frequency of oscillation, the linearized velocity
potential developed in reference 2. Since only slow oscilla-
tions were considered pertinent to single-degree torsional
instability, terms in the expansion involving the frequency
of oscillation to powers higher than the first were not
considered. _

In the present report the expanded linearized velocity
potential iz used to study the effect of aspect ratio on the air

forces and moments of an oscillating, thin, flat, finite, rec-
tangular wing when higher powers of the frequency of oscilla-
tion are taken into account. The motions considered are
sinusoidal torsional oscillations about & spanwise axis taken
simultaneously with sinusoidal vertical translations of this

axis. The velocity potential is developed by use of sources o

and doublets, so as to include all powers of the frequency
of oscillations up to any desired power. Simple, closed
expressions are given for the velocity potential, components
of the total force and moment coefficients, and components

of the chordiwise section force and moment coefficients involv- | __

ing powers of the frequency up to and including the third
power. Extension of the results to include higher powers of
the frequency is straightforward.

A recent publication, reference 3, that became available
after this investigation was completed, is partly devoted to
the treatment of a rectangular wing undergoing the same

types of harmonic motions as those considered herein. The

velocity potential is determined in the form of a double

integral, by application of the Fourier transform to the

boundary-value problem for this potential, and expressions

for forces and moments are given in‘terms of this double . _

integral. The reduction of the integral expressions of

reference 3 to forms desirable for flutter calculations—that .

is. chordwise section forces and moments—is not given.

SYMBOLS
¢ disturbance-velocity potential
x,Y, rectangu.l&r coordinates attached to wing
. moving in negative z-direction

& rectangular coordinates used to represent
space location of sources or doublets in
xy-plane

Zn function defining mean ordinates of any
chordwise section of wing such as y=y, as
shown in figure 1

w(z,y,h) vertical velocity at surface of wing along
chordwise section at y=1,

Xo sbsecissa of axis of rotation of wing (elastic
axis) as shown in figure 1

t time

k vertical displacement of axis of rotation

ko amplitude of vertical displacement of axis

of rotation, positive downward

1 Supersedes NACA TN 2084, “Effect of Aspect Ratio on the Air Forces and Moments of Harmonleally Osciflating Thin Rectangular “‘[ngs iz Supersonic Potential Flow" by Ch:u-les

E. Watkins, 1850.
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angle of attack

amplitude of angular displacement about
axis of rotation, positive leading edge up

time derivative of k and e, respectively

velocity of main stream

velocity of sound

free-stream Mach number (V/e)

functions defined with equation (7)

function used to represent space variation
of source and doublet strengths

function used to represent time variation of
source and doublet strengths

frequency of oscillation

1educed frequency (wb/V)

n

represents functions of @, z, and A, defined
in equations (15)

represent functions of z, 2q, and & @, . defined
in equations (19)

function. used to denote doublet distribu-
tions (see equation (22)) '

function defined in equation (28)

function defined in equation (29)

density
downward, defined in equation (31)

half-chord

half-span

aspect ratio (s/b)

total force acting on wing defined in equa-
tion (32)

components of total force. coefficients,
defined in equations (35) .

total moment acting on wing, defined in
equation (36)

components of total moment coei’ﬁc1enbs
defined in equations (38)

section force (total force at any spanwise
station), defined in equation (39)

" components of section force. coefficients,

defined in equations (41) and (42)
section moment (total moment at any span-
wise station), defined in equation (40}
components of section moment coefficients,
defined in equations. (43) and (44)
functions related to F and &,, defined in
appendix

_ ANALYSIS
BOUNDARY-VALUE PROBLEMS FOR YELOCITY POTENTIALS

Consider a thin flat rectangular wing moving at a constant
supersonic speed in a chordwise direction normal to its lead-
ing edge as shown in figure 1. The boundary-value problems
for the velocity potential for such & wing may be conven-
iently classified into two types associated with the nature
of the flow over different portions of the wing. On the
portion of the wing between the Mach cones emanating from
the foremost point of each tip (region N in fig. 1 (a}) thero
is no interaction between the flow on the upper and lower
surfaces of the wing. The type of boundary-value problem

_./mmn
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(a) Plan form (zp-plane).

(b) Section y=y (z2-plane).
FicUeE 1,—Sketch {llustrating chosen coordinate system and the two degreca of freedom
a and A,
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for this portion of the wing is referred to herein as “purely
supersonic” and the velocity potential for region N is de-
noted by ¢y. On portions of the wing within the Mach
cones emanating from the foremost point of each tip (regions
T,, Ty, and T; in fig. 1 (a)), there is interaction between the
flow on the upper and lower surfaces of the wing. The type
of boundary-value problem for these portions of the wing is
referred to as “mixed supersonic’” and the velocity potentials
for these regions are designated by ér,, ¢r,, end ¢r,, respec-
tively. The complete velocity potential at a point may then
be expressed as ¢y, ¢r,, ér, OF ¢r, according to the region
that contains the point.

As customary in linear theory, as applied to thin flat sur-
faces, the boundary conditions are to be ultimately satisfied
by the velocity potentials at the projection of the wing onto
a plane (the zy-plane) with respect fo which all deflections
are considered small and which lies parallel to the free-
streem direction. Thickness effects are not taken into
account; hence, the velocity pofentials are associated only
with conditions that yield lift and are consequently anti-
symmetrical with respect to the plane of the projected wing.
It is therefore necessary to consider the potentials at only
one surface, upper or lower, of the projected wing. The
upper surface is chosen for this analysis.

The differential equation for the propagation of small
disturbances that must be satisfied by the velocity potentials
is (when referred to a rectangular coordinate system z,y,2
with the xy-plane coincident with the reference plane snd
moving uniformly in the negative z-direction, fig. 1)

179, -0V
=(t7a)

The boundary conditions that must be satisfied by the veloc-
ity potential are: (a) In regions Ty, Ty, T;, and N the flow
must be tangent to the surface of the wing or

(%) =wemn=v

where Z,, 1s the vertical displacement of the ordinates of the
surface of any chordwise section of the wing (see fig. 1 (b)).
(b) In regions T, and T, the pressure must fall to zero along
the wing tips and remain zero in the portion of the Mach
cones emanating from the foremost points of the wing tips
not occupied by the wing. (Another condition, that the
potential must be zero ahead of the wing and in the region
off the wing adjacent to the Mach cones emsanating from
the foremost points of the tips, is automatically satisfied
by the type of source and doublet synthesis employed in
the solutions.)

0% , 0’¢ , 0%
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For the particular case of a wing independently per-
forming small sinusoidal torsional oscillations of amplitude
|| and frequency » about some spanwise axis ¥ and small
sinusoidal vertical translations of amplitude [Ay and fre-
quency w, the equation of Z, is

Z =" afz—z0)th]=a(zr—2z0)+ I
Substituting this expression for Z, into equation (2) gives
wiz, )= Vatalz—zd+h 4

The velocity potential may thus be expressed as the sum

of separate effects due fo position and motion of the wing

associated with the individual terms in equation (4) as
p=0aT dst i

DERIVATION OF ¢x

(5)

The boundary-value problem in the purely supersonic

region (fig. 2 (a)) is the same as that for the two-dimensional
wing treated in reference 4. This problem is there shown fo

be satisfied by a distribution of sources referred to, in this
case, as moving sources because of the umiform motion;
that is,

oo st=—55= | "[wenadnde @

In equation (8), W'(tn) represents the space variation of

@)

source strength and must be evaluated in accordance with _

the individual terms of equation (4), and ¢, is the potential
of & moving source situated at the point (£,%,0) that may be
expressed as

‘w(t—'rl)—l-'w(t— 1'2)

Y —1)(n2—1n)

$

where w(t} is the time variation of source strength and the
symbols with subscripts appearing in equation (7) are

defined as
_M@z—8 - m)(nz
¢p?
_Mz—85, Vr—2)(n2—n)
e ' Be

n=y—5 VG-I —F7

1
ﬂz='.ll+§ V(z—§?—p2?
The time wvariation of source strength w() for harmonic
oscillations may be written as

w(f)=ett

8

@ -
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(a) Purely sapersonie region.
(b) Mixed supersonic reglon.

FIGURE 2.—Sketch {llustrating areas of integration for purely supersonic and mixed saper-
sontle regions of flow.

The numerator in equation (7) thus hecomes

w(t— 7)) wE— ro)=eiel—r1) | glali—ro)
T3+

—tew
=2¢twe 2 cosw

D)

<

Substituting equations (7} and (9) into equation (6) yields

on(2,y,2,0)= - .

o
(10)
where, for briefness,
s_oM_ o
Tt VR
and
R=@— =By —n)— B2 =B —m)m—n)

The values of W(¢,9) associated with the different terms of
equation (4) are

For ki —
Wien)="YE2 1, (11)
For Vea
W(tm)=Ven - ay
For &({x—axq)
. 2— N
Wi m=1 L at—a) (13)

If any of the values of W(¢, 9) given in equations (11), (12),
and (13) is put into equation (10), the integration with

DT gy

e o (o T (gm0t
0

respect to 5 can be readily performed and the remaining
integral evaluated as a series of Bessel functions. (Sec,
for exumple, reference 4.) However, in order to be con-
sistent with and to lead naturally to a succeeding part of
the analysis the integrand is expanded into & Maelaurin's
series with respect to @w. The expansion yields

ntzetd==7 [ [P W[ (g tangt .

tangt . . HeaR+antRt . .
A (@ RP™ 3+ 4y ER P

.]dn dt (14)

-I—a,.ﬁ“R-l— « .. )+ ..
+. ot R L O+

where the coefficients a,» are functions of w, z, and 1f;
those coefficients involving @, up to and including the third
power, are

-2 3
o— w 1@
Q= 1 —1,wx—§-r’+—6— &3

it
an=1to+w? z—5 z*

y =8
an='—%+1";“x
L (15)

Tw®
a-al='—T'

o @? 10
Ca="3 T 3"
Qo — .
1o ME J

Observe the following identity that is valid regardless of the
highest, power of & considered and that will be of subsequent
use, namely

Gm-l-xau-!— v e Fataee==1 (16)

It will be noted in equation (14) that the potential of a mov-
ing source when expanded in terms of the frequency appears
as a series of terms similar to steady-state source potentials
plus series of terms involving various powers of R. By
grouping the terms in equation (14) with respect to powers
of §, the following form of the source potential convenient
for later use is obtained:

twt r—f0z2
onlay,2.0)=— ﬁ f " 1) [(aml—l?+amn+ .

t aonRP - . -)+E<aufl?+alzR+ .

FamBm ) (a,,_é+a.,3

I e ST .)+. . ] dn di (17)

With the terms of the series grouped in this manner, in view
of the fact that the differential equation (1) is independent
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of £ it is apparent that the coefficient of each power of £in
equation (17) is a solution to the differential equsation.

If the values of W(¢) in equations (11), (12), and (13)
are put into either equation (14) or equation (17), the inte-
grations of each term can be easily carried out in closed
form. Moreover it cen readily be shown that, when 2ll the
terms involving @ up to a given power are taken into account,
the differential equation (1) is satisfied to the highest power
of @ considered. The boundary condifion of tangential
flow as expressed in equation (4) is satisfied exactly and
does not depend on the order of @ considered.

Putting the values of W{(,5) in equations (11), (12), and
(13) successively into either equation (14) or equation (17),
carrying out the indicated integration, and setting 2=0
yields for the velocity potential, to the third power of @ at
the upper surface of the wing, in the purely supersonic

region:

¢‘N'—— (hfl'l" Vafst+afs) (18)
where
_fl=:r,—12E zi— 12“5{, (2624 3)z® ]
frea—5 P (@F 2 IR B) - (19)

(z—3z0)— 4:8Mz(2ﬁ’+3)z“(z—4:vo)

"LC!!:E

f3=%(z —2z)———

o

DERIVATION OF ¢r, ér, AND gz,!

In order to satisfy the boundary-value problem in regions
of mixed supersonic flow it is convenient to start with the
potential of a moving doublet. Then, for a given order of
the frequency of oscillation, this potential, as will be shown
in the following analysis, can be modified so- that when
integrated over the appropriate region the results will satisfy,
as in the purely supersonic case, the differential equation to

the given order of the frequency and will satisfy the condi-.

tion of tangential flow exactly. The potential of the type of
doublet required may be obtained by partial differentiation
of the potential of a moving source (see integrand of equation
(17)) with respect to the direction normel to the plane of the
wing, namely

etet b

b= (ﬂo[ R+(102R+ +a0mR2" 3—[—- )+
Elan ‘R-l-auR—!— .. .+amR’”“3-l— .. .)—[—

g (a-,,l BBt e B .)-;-, : ]
(20)

Examination of equation (20), like equation (17), shows
that the coefficient of each power of £ satisfies the differential
equation and, since the differential equation is linear, it is
permissible in synthesizing the solution to the boundary-

tAlthough the derivation of these potentials in NACA TN 2064 led to correct resulis, the
procedure followed therein fs based on erroneous arguments. The present procedure Is
correct and general.
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value problem to weight these coefficients separately.
Furthermore the coefficient of each power of £ consists of a
term that has the form of a steady-state doublet potential,

namely
Om 55 (R)

plus a series of other terms involving various powers of E.
In the following analysis, attention is first directed to the
treatment of the first term of the coefficient £*, (expression
(21)). The other terms will be treated subsequently.
Expression (21) has the form that in steady flow is con-

2D

venient for treating the (antisymmetric) problem of satis-

fying the condition of tangential flow for a distribution of
normal velocity preseribed, at the wing surface, independent
of y but proportional to x*; that is, & weight or distribution
function D,(£,7) can be determined so that

= 2
lm 2, [ Dugm dedn=rar  n=0,12,..) @2
where the region of integration r is the portion of the wing
situated in the fore cone emenating from the field point
(z,9,2) (shown in fig. 2(b) for the recta.ngxﬂa.r wing with
2=0).

The distribution funection D, for rectangular wmgs may be
easily determined when 7y, the distribution function for this
wing at constant angle of attack in steady supersonic flow, is
known. The expression for I, is derived in reference 1 and
found to be

2| VErapm+tsin 2 | @

From this expression and equation (22) it follows by direct
substitution and reduction that

£ (e £ £
Dn=n!J; J; -t 'J; DO(E! ﬂ)(df)“=n‘£l (E_k)ﬂ-lpﬂ(kr 77) dx
@49
With D, known so that equation (22) is satisfied it may be
demonstrated, with use of identity (16), that these “doublet-
type” terms alone satisfy the condition of tangential flow.

For example, let it be required to satisfy this condition for
vertical translations; then,

w0k Z [ [ [ amDaten  |azan

=h(an+zan+ ... +m"a,1)=fa.
The next step in the analysis is to consider terms of the type

%(amRz’“ ) m>1 25)

appearing in the coefficients of £* (equation (20)). Itis to be
noted that, when the power of @ to which the potential is to be

derived is chosen, the number of terms in equation (20) that

are to be treated is determined by the expressions a,, that

contain @ to the chosen order (see equations (15) for & to the
third power).
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If the distribution function D, (equation (24)) is intro-
duced into equation (20) and the resulting equation is inte-
grated over the appropriate region of the rectangle (fig. 2(b)),
it is found that in the limit as 2—0 terms of the type
given in expression (25) do not contribute to the resulting
potential, but they do contribute to the resulting vertical
velocity. Therefore, since it has been shown that the doublet-
type terms, taken alone, satisfy the condition of tangential
flow, the distribution of vertical velocity would now contain
extraneous terms that need to be canceled. This cenceling
may be achieved by what is essentially an iterative process:
the functions I}, (equation (24)) are used with terms in
equation (20) that have the form given in expression (25) to
calculate the velocity that is to be canceled; then, terms in-
volving 1/R that may be individually weighted and which,
of course, must satisfy the differential equation to the order
of @ to which the velocity potential is to be derived are added
to equation (20); finally, by meking use of equation (22},
weight or distribution functions for these additional terms
may be determined so as to cancel the extraneous velocity.

This process is illustrated for » to the third power as
follows: '

or=—lim <=2 | [Wew)| Do(on f+aak )+

-0

D¢ (au I—]_'2+G12R)+ Dyay, §+DSGSI§+

au(tDi—= D) §au (B 2) Elaran o)

where it is noted in the integrand that two extra terms have
been added to equation (20) to accomplish the desired
canceling. Substituting the values of W(¢n) defined in
equations (11), (12), and (13} into equation (26) gives the
expressmn for the velocity potentml at the upper surface of
the wing

~5= (i 2p= (4 ) Pt e
Ve [2F1—(2i6+%§ o—gage ) Fim
B Pt oo 28— 1)F, +a{2(x 2P~
[ 2+2i8—a0+53p @*—2220 | Fit

[ 25— 620 | Fetgqp 2+ DR ) e

where the terms are grouped conveniently by the definition
of F, in the following integral:

F,= ﬁ’zn—lsin-l,/%dz (n=1,2,3,4) (28)

(The functions F,, given in equation (28), and certain
related functions are of particular importance in the remain-
der of this development. Integrated values of this function
for the first few values of n and expressions for related
functions needed later in this analysis are given in the
appendix.)

Examination of equation (27) shows that along the Mach
line z= By, separating region T, from region N, the expression
ér, reduces to the expression for ¢y given in equation (18).

The corresponding potentials for regions Ty and T; can
now be obtained. The potential ¢r, is obtained from equa-
tion (27) by merely substituting 2¢—y for ¥ in equation (28)
so that

Gﬂ:ﬁ z®! gin~! ‘[E(g‘;__l). dx (n=1,2,3,4) (29)

The potential in region Ty (that is for 1=.48<2) is a simple
superposition of the potentials for regions N, Ty, and Tj, as
in the steady case (see, for example, reference 5), and may be
written. as

bry=dr,+ dr,— by (30)
FORCES AND MOMENTS

Two types of force and moment coefficients are derived.
First, in order to gain some insight into the over-zall eflcet of
aspect ratio on the forces and moments, expressions for tolal
force and moment coefficients are derived. Then, in order
to present expressions that are more suitable for use in
flutter calculations, expressions for section force and moment
coefficients for any station along the span are derived.

Total forces and moments.—The local pressure difference
between the upper and lower surfaces on the wing may be
written

B ¢ | b
——2P(a—t+"a (31)

In order to derive expressions for total forces and total
moments, it is only necessary to consider the wveloeity
potential in two regions—either regions N and T, or regions
N and T,. Therefore the expression for the total foree,
positive downward, on the wing may be written as

P=—2 foAdeyda:—ZfTJ Apr dydx

where Apy is to be calculated from equation (18) and the
integrations in the first term are to be extended over the
shaded portion of region N shown in figure 2 (2), and where
Apr, is to be calculated from equation (27) and the integra-
tions in the second term are to be extended over region T,.
(The integrations in the first term are simple and may be
performed by inspection. Those in the second term may be
readily performed by meking use of the relations given in
the appendix.)

(32)



EFFECT OF ASPECT RATIO ON HARMONICALLY OSCILLATING BECTANGULAR WINGS

After the indicated integrations have been performed and
all position coordinates involved have been referred to the
chord 2b (but the original coordinate symbols maintained),
the results can be written as

P8 btV 22 Aest ["T (LiiLy) +au(E;+«:II)] (33)

where the reduced frequency k is related to w and @ by the
relations

k=%=% 5 (34)
and where
,=&——f“'—;]—"—ﬂ [B,—L—;I—;‘ (4+52)] (35D)
1= 353 (36 + 662957 { g
éﬁ (882 +4)+48°zq(2 -HS’)]} (35¢)

=y 1 —2520) 4 3 g2y

i | 545 2+ 36720 — o (8+48"+208%,k55%0 |

The quantities Z; (=1, 2, 3, 4) are the in-phase and out-of-
phase components of the total force coefficients, I, and I,
being the in-phase and I, and L, being the out-of-phase
components. It will be noted that E and I, are associated
only with vertical translations of the wing and are inde-
pendent of axis-of-rotation location z,. The components
T: and I, are associated with angular position and rotation
of the wing about any axis z=u, and depend partly on the
location of xy.

The total moment, positive clockiwise, on the wing about
the arbitrary axis of rotation z=uz, is

M. = —2fo(x—x°)ApNdydx—2frlf(a:—ro)Aprldy dx
(36)

If steps similar to those required to obtain equation (33)
are performed, there is obtained

=—spbsv2k=Aef~‘|:"° (M1+z1+ao(M,+z_¢)]

37)
where
2
M52 — 320 — 5 1 36"+ 1 — o2+ 87 (352)
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A2k
28°

%(1—%0)- (3—dz)—

{7 @~ 30— s 4™+ ) —529]} (38b)

Mo gia(1—220—

3| @300~ s 4G+ 3894+ 5236+ 35— 9)—

‘35 545 8+ 62+4z(8*—1)—86%x]—

20ﬁ2xo=(32+2)]} (38¢)
Me=g ﬁak [2(82—1)—3xo(28°—1)+ 6" ro“1+

A% - )

155 (20+4ﬂ —252,+408%x,—608 moz)-l-

JA{FEBHE D=6~ - o

1;}[20(2%’) 24,2 38— B9 — 3013’1'02(4+132)]}

(384)

The quentities 37; and 3, are, respectively, the in-phase and

out-of-phase components of total moment coefficients about
the axis x=u, associasted with vertical translations of the
wing; M; and M, are the correspondmg components due to
angular position and rotation of the wing about x=2,.

Tt is of interest to note in equations (35) and (38) that the -

components L, and 3, do not involve the reduced frequency
k. The effect of frequency on these two components comes

from terms involving the frequency to the fourth and higher

powers; but for values of £ thought likely to be encountered
in supersonic flutter (k<0.1), the confribution of these higher-
power ferms to any of the components in equations (35) and
(38) is, for the most part, negligible.

P
¥

Section forees and moments.—The section forces and _

moments at any spanwise station are derived by integrating
the pressure difference along the chord for the forces and the
pressure difference multiplied by a moment arm for the
moments.
symmetrical with regard to the midspan section, it is only
necessary to derive expressions for the forces and moments
at any station of the half-span adjacent to the origin. (See
figs. 1, 2, and 3.)

Under the restrictions previously stipulated two cases
from the tips do not intersect on the wmg (or Aﬁ>2), and
(2) the Mach lines intersect on the wing but the Mach line
from one tip does not intersect the opposite tip ahead of the
trailing edge (or 1=A48=<2). Only the final forms of the
section force and moment equations are given. These
forms are easily caleulated by deriving the pressure difference
for the different regions from the appropriate velocity
potential, making use of figure 3 to determine the limits of

.

Since the distribution over the entire wing is
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integration for the regions involved, and using the relations
given in the appendix to carry out the more troublesome
integrations. The integrated expression for any region can
then be reduced to the forms

— 4p bV [’% (L1+rst)+ao<La+iL4)] (39)
and
= — 4 bV TR ["" <M1+zM,)+ao<Mx+zM4):| (40)

where the position coordinates are referred to the chord
length 25.

The components of force and moment coefficients for the
half-span adjacent to the origin are as follows:

Case 1 (see fig..3(a)): For any section between the tip

and the point where the Mach line intersects the trailing
edge, or where 0<y<%, the components of section force

coefficients are

Ll——"—(Fl ) . (41&)
L3 %2kFI M k[(2ﬂ2 1)F2—3132Fa]} (41b)
= = 4 21 =

La=% [% Fx’—(l-szo)Fri'%l Fy—
2 2
.2(2;3‘3;;—1):60}‘-.2 Gﬁﬂ;|-5F’] ~ (41c)
2 2
=z @—eoF LR |+ 50 (30 —prr 200+

92821, —A48'ze) Fa—6844—320) F— (1—782— 2084 F,] } (41d)

where F, (n=1, 2, 3, 4), given in the appendix, is obtained
from F, (equation (28)) when z=2b. For any section
between the point where the Mach line intersects the trail-

é the compo-
FSYSTS !
nents of section forces are: o _

ing edge and the midspan, or Where

L1=é~
1 Mk
L=g—
L r(42)
Ls=m _‘[(3+l32)+6132$o]
L= (6= D= 26%2d + FoF (5 8+ 126729
o

As a check om the results in equatioﬁs (41) and (42) the
expressions in equations (41) reduce to those in equations

(42) when y=%-
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° & 23‘
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T3
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]

(a) Mach lines from tips do not Intersect on wing,

(b} Mach Iines from tips interseet on wing but Mach line from one tip does not Interacet
opposite £ip. o . o . I . -
(¢) Much lines from tips Interseot on wing and Mach line from one tip Intersecls opposite
tip at trafling edge.
F16URE 3.—Sketch illustrating different Mach line locations accounted for In analysls,

The components of section moment coefficients for case 1
are as follows:

For 0<y< %)

= 2 q
AII:_%I:(I—Q'xo)FrF-?Zo 213ﬁj-1 | et 3,3 +2 ]
{43n)
M _—{ (Fz““xaﬁ )+ﬂf’k (26— 1‘)321 _.2_?02_?"4_610}?’_
467+1 3
ey (43b)
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4 = =) _ 40— =
R‘{“:’g_ﬂ,[% (Fz_IDFl)_ ( 3?—[—3%2)17'1-[—

(68*+36°—

_ 2.0 2 2) =
1)(1 2ﬁ:'0)+4ﬁ Lo (1'!'—'232)1;"2_[_
6(1 = 208*+21 3

( ;ﬁ*) puFe ﬂTﬂF]

2 ! 2
2Bﬁ;|— 1 oF _ _2ﬂﬁ—L— 1z Fa

(43¢)

M=t (3| a—2otFit

4M% (1
8% 16p*
(2—4x,t+ 3102)-?;3—

+
(48— 282+ 1) (1— 3o+ 32 +1— 325 Fa—

53 88+ 48*—D)F

352 6B+ 3)Fs} ) @3
and forégyé‘é_‘l,

2 ;
My=35 (2—320)
Mz—ﬁ—k (1—2z)— ;‘gf (3—4x))
Mi—gps (1= 220 — 55 3+ B'—davH 48" —86%s) | (44)
M4=§§; [2(8*— 1) —3z(26°—1)+ 66,7+

JI;I: [4(5+ D+ 52, (88— 5)— 6082z

o

The expressions in equations (43) reduce to those in equa-

tions(44) when y=%. The expressions in equations (42) and

(44) correspond to the more exact two-dimensional compo-
nents of force and moment coefficients derived in reference 4.
For values of £<0.1 these expressions yield, for the most
part, values that are in good agreement with those that
may be calculated from the tables in reference 4.

Case 2 (see fig. 3 (b)): For any section between the tip
at y=0 and the point where the Mach line from the tip at

y=2s intersects the trailing edge ( or where 0 <y = A——%);

the components of section force coefficients are given by

equations (41) and the components of section moment co-
efficients, by equation (43). For any section between the
point where the Mach line from the tip at y=2s intersects

the trailing edge and the midspan ( or where :'1——%<y g‘;)

the components of section force coefficients are
== {% [(1?71"‘ 51) - L +%ﬂ2 (f’z"{‘- 52)-}"‘%}
L= L (Pt B AE ’“[(252—1)(F,+ &) -3 (Fet- G}

(% M
8k B

213637—58——48

(454)

(45Db)

L3='—;‘; [':)lk‘z (F+@)—20—22)(F+G)+

AL (B 5) - 22D (B ) -

SEES (Rt @) | { g [B+80+68%d]  (450)

L;=E;{Z;[(2—xo)(Fl+G-i)—3ﬁz+l (Fz+02):|+

Ak
36
68%(4—3z0) (Fot-Go) —(1 —782—208Y (i+§4)]}—

[3(1—82+28*+ 28—z, (Fot+-G.) —

{Fpe D2t g G} 450

whera 5, (n=1, 2, 3, 4), given in the appendix, is obtained
from @. (equation (29)) when z=25. The corresponding
components of section moment coeflicients are

Ml=~{i [(1 —22) (F1+§1)+2‘°(25 +1) (F, +a,)]—

L (Bt 8) 453 2— 300} (462)
M= { [(F4G,)—z F.+-8) ]+
L (Fer 8) || [ 7 0 —200- 508 G—t00)]
(46b)
3= 2] (Fot B —ooF ot B,) |42 2230 (71 5 )+
Bx Lk

(66 L3 1)1 22 487261 4267 (. 4 ) ¢
624(1+67 2084+216°+3
82048 (F,+F,) - 2EL 22 (Fi.5)) -

{# (1 —2xo)—2%5 [(38+89)—4z,1 —BH)—88%7] } (46¢)

28241

g ¢0(=2+52) -

A14=ﬁ4_1r (% [(1_3:0)2(1?1 +51) +

2
2 (Fra) 4“;{:’“

1—3x7 (ﬁz'l"ax) —(2—4‘-130""3102)(?3‘1‘(:;3) -

(& G826 D(1—ark 3

o (38* +4B"’—1)(F4+G) s 5+ (Tt} )—

{3‘33]‘: [2(82—1)—38z(28%— 1)+ 6822+

Mk }

1587 [4(5+8%)+52(86°—5)— —608%247 (46d)
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For the limiting condition of case 2—that is, when the
Mach line from one t]p intersects the opposite tip at the

trailing edge, .or A—— (see fig. 3(c))—the components of

section force coefﬁcmnts are given by equations (45) and
the corresponding components of moment coeflicients, by
equations (46).

SOME PARTICULAR CALCULATIONS AND DISCUSSIONS

From the expressions for total force and moment . co-
efficients (equations (35) and (38), respeéctively) the over-all
effect of aspect ratio on the magnitude of the forces and
moments can be calculated for particular values of the
parsmeters M, k, 2, and A. Examination of these equa-
tions shows that .varying some of the parameters might
cause some terms in the equations to vanish and to change
sign. For example, if 2 is continuously increased from some
value less than 1/2 to some value greater than 1/2, the first

terms in the expressions for M, and M; vanish at :r.o=% and

48
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Fravee 4,—Contloued.

change sign when 2, becomes greater than 1/2. In particular,
decreasing the aspect ratio decreases the components of force
and moment coefficients L;, I;, I M, AI,, and A M, but
increases the two important components I, and M,
Although the effect of aspect ratio may change considerably
with only a small change in any one (or more) of the param-
eters M, k, and x, some insight into what the over-all
effect might be can be gained from calculations of all the
components of total force and moment coefficients for various

. values of A and A and fixed values of the parameters & and

%,. Résults of such a set of calculations are presented in
figures 4 to 7. .

In figures 4 and 5 the components of total force and
moment coefficients for various values of A and for z,=0.4
and £=0.02 are plottéd as functions of Af%. The curves in
these figures calculated for infinite aspect ratio correspond
to the two-dimensional results of reference 4. The dashed
curves represent calculations for aspect ratio and Mach
number. combinations that cause the Mach lines from one
tip to intersect the opposite tip at the trailing edge so that
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Ficure 4,—Continoed.

~ along the dashed curves the aspect ratio is not constant but
varies with Af? according to the previously given expression

1 1
8 JAr—1

The difference, at any value of 3/2, between the dashed
curves and the curves corresponding to infinite aspect ratio
. in figures 4 and 5 is, therefore, for the chosen values of
k and z,, the maximum effect of aspect ratio on the com-
ponents of total force and moment coefficients for a rec-
tangular wing under the restrictions of the foregoing analysis.
It will be noted in figures 4 and 5 that, when the aspect
ratio is small, the deviation of the three-dimensional results
from two-dimensionsal results may be quite large.

In figures 6 and 7 the components of the total force and
moment coefficients are plotted as functions of aspect ratio
for 2o=0.4, £=0.02, aud some particular values of Af. It
will be noted in these figures that all the components of
force and moment coefficients undergo rapid changes with

- may be noted in the tip regions, 0y =

24
16 | —
1[" A=} |
8
0 e
I iz
4 //
_8 A
/
//{/‘
=5
-6 7 7.6
/=
g //
(d)
32 2 3 7 5 3 7
ME

@ L.
FIGTRE 4.—Concluded.

respect to varying aspect ratio when A becomes less than
4or5. Itmayberemarked that the directions of the changes
with respect to aspect ratio appear to be such that they would
have favorable effects on the flutter characteristics of a wing.

The spanwise distribution of the components of section
force and moment coefficients computed from equations (41)

to (44) for A=4, 2,=04, £=0.02, and Af=2 are plotted

in figures 8 and 9. The portions of the curves in these

figures corresponding to values of y in the range % Sys A—%
are the two-dimensionsal values, and the effect of aspecﬁ ratio
1 1
B 8

as deviations from these two-dimensional values.

In conclusion, it may be stated that, in regard to the.

effect of aspect ratio on supersonic flutter, an important item
that has not been discussed herein but ean be studied for any
perticular case with the aid of equations (33) and (36)
is the change in center of pressure, associated with preseribed
motions of the wing, with change in aspect ratio. An
investigation to find the effect that thickness might have
on the center-of-pressure location is also needed. An
extension of the foregoing analysis to include the effect of an
aileron as an additional degree of freedom would follow
in & straightforward manner.

LaNGLEY AERONATTICAL LLABORATORY,
NatroNaL Apvisory COMMITTEE FOR ABRONAUTICS,
LaxceLey Fiewp, Va., January 6, 1960.

and A——=y =<4,
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APPENDIX

SOME INTEGRATED VALUES OF F,, G, Fa, G», AND OTHER RELATED FUNCTIONS

Values of F, and &,.—The values of the functions F, (equation (28)) and @, (equation (29)) for the first few valucs
of n are as follows:

Fﬂ:ﬁta’ﬂ_lsm—[mda: n=1,2,%,...) 7

='Jm+zsin_'l“m o

F 3x*+4ﬂyx+8€y W-l——sm"lwﬁy/z

F, 5 66ya* - 862211 68"

¥ s it s
140 By(z—py)+7 sin™ VBy/z

F 352%4-408yx°+ 488’2+ 648%°z+ 1288%*
&

R 5 - R
1575 VBy(e—By)+% sin~ VBy/z

= n—1 .3 ~1 ﬁ(28—y) o - . L e
G, j:a: sin -J———x dz (n—l 2 3,...)

=m_'y)'[;;ﬂ@-s_;;];;;ﬁa,/—ﬂ@sT—w. T

Gz ——-—z+2ﬁ(28 y) /3(28 y) [11 ﬁ(23 y)] sm —‘/_ﬁ(z‘;_y) . "__ _ '; | ) | ’ _ _— '— - -

G, 33=+4@5_‘5(23—"1??"'8)32(23—?!)2 1/;3(28—1/)[xF-ﬁ(2s—y)]+%asin“\/B(zi_y) :

3 2 . 2 — a2 379 3 —_
6,=5¢ +628(2s y)+8r;i(()28 ¥ +168%2s—y) VBB — ) r— Byl + sm_, /6(283: ¥)

G 359:4-|—40a:3;3(2s—y)+48x’ﬁ’(2s — ¥+ 64x6%(2¢ _g)3+12834(2s“_y)

(45), and (46) in the body of the report. In these expressions the variable y has been referred to the chord 25;

1575 VBG — = (2s_y)]+ * sin=! /B(ze;—y)

Values of ﬁ and 5,..—The following expressions define the functions i,, and (j,, appearing in equations (41), (43),

y/2b has been replaced by y and in the expressions for 5,, the ratio s/b has been replaced by A:

Fi=Byl—By)+sinvBy e

ﬁ-‘,:

F,
F=

F,

672

E28Y BT+ gsint By

3+45u+86’

By —By) ﬁy)+ sin~1 /By
5468y +86% +168%°

T Ff‘sy(l—ﬂy)"‘% sin™! By

36+408y+488%+ 648%2+ 12884

1575 ¢ vm% sin~! By

that is
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Gi=+BA—y)1—B(A—y)]+sin VBA—Y)
B =1T2BAY) R By + 5 sin~ BA—)

3+468(A—y)+8p%(A—
45

Bi= W (BA—a—AA—y]+3sin~ VBA—)

G, =S OBANHBFL YV H 1A /B a— g T—R(A—p)] -+ sin~ YBCA—3)

= 35+408(A— 488 A—y)Y 164683 A— 12884 A—y)* 1.
a, +408( 1) +488% ?{)5;_{'5 B%( yP+ BY ) Jﬂ(A—y)[l—ﬁ(A—y)]+gsm“ B(A—y)
Some integral relations for F, and @,.—Some pertinent integral relations for F, are as follows:

z . .
L Fldz=an_Fn+1 . . -

'z 1 2 -
| aFuda=3 @F.—Fusd

s 1 '

j:z-Fﬂ dx=§- (stn—Fﬂ.i.s)

2
— 1
[T e—adFade =T 4o Py P

z 8 _ 3 g2l 3zl . 1
j; (z—zo)’ Fy dz=% 103; T3zez Fg—a:uan+1+qun+z—'3' A3

Corresponding integral relations for @, may be obtained from these relations by simply replacing F by &.

Integral relations for .F__‘n.—Integral relations for F, that may be used in celculating total forces and moments from
sectionel forces and moments are as follows:

2bf1m F=’1a’y=&

1B

Obf lﬁngy-—g;

25 llﬂﬁdy—gzg

2bf " Fdy —gg;

"bf /ﬂFsdy—gg;
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